675 research outputs found

    On U_q(SU(2))-symmetric Driven Diffusion

    Full text link
    We study analytically a model where particles with a hard-core repulsion diffuse on a finite one-dimensional lattice with space-dependent, asymmetric hopping rates. The system dynamics are given by the \mbox{Uq_{q}[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic Heisenberg antiferromagnet. Exploiting this symmetry we derive exact expressions for various correlation functions. We discuss the density profile and the two-point function and compute the correlation length ξs\xi_s as well as the correlation time ξt\xi_t. The dynamics of the density and the correlations are shown to be governed by the energy gaps of a one-particle system. For large systems ξs\xi_s and ξt\xi_t depend only on the asymmetry. For small asymmetry one finds ξtξs2\xi_t \sim \xi_s^2 indicating a dynamical exponent z=2z=2 as for symmetric diffusion.Comment: 10 pages, LATE

    Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery

    Get PDF
    Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS: SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS: In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered

    Electronic correlation effects and the Coulomb gap at finite temperature

    Full text link
    We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a function of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii lnRT1/2R \propto T^{-1/2} law is obeyed, whereas at higher temperatures deviations from this law are observed, indicating a cross-over to Mott's lnRT1/4R \propto T^{-1/4} law. The mechanism of this cross-over is different from that considered previously in the literature.Comment: 3 pages, 3 figure

    Transport of interface states in the Heisenberg chain

    Get PDF
    We demonstrate the transport of interface states in the one-dimensional ferromagnetic Heisenberg model by a time dependent magnetic field. Our analysis is based on the standard Adiabatic Theorem. This is supplemented by a numerical analysis via the recently developed time dependent DMRG method, where we calculate the adiabatic constant as a function of the strength of the magnetic field and the anisotropy of the interaction.Comment: minor revision, final version; 13 pages, 4 figure

    Density Profile of the One-Dimensional Partially Asymmetric Simple Exclusion Process with Open Boundaries

    Full text link
    The one-dimensional partially asymmetric simple exclusion process with open boundaries is considered. The stationary state, which is known to be constructed in a matrix product form, is studied by applying the theory of q-orthogonal polynomials. Using a formula of the q-Hermite polynomials, the average density profile is computed in the thermodynamic limit. The phase diagram for the correlation length, which was conjectured in the previous work[J. Phys. A {\bf 32} (1999) 7109], is confirmed.Comment: 24 pages, 6 figure

    On Matrix Product Ground States for Reaction-Diffusion Models

    Full text link
    We discuss a new mechanism leading to a matrix product form for the stationary state of one-dimensional stochastic models. The corresponding algebra is quadratic and involves four different matrices. For the example of a coagulation-decoagulation model explicit four-dimensional representations are given and exact expressions for various physical quantities are recovered. We also find the general structure of nn-point correlation functions at the phase transition.Comment: LaTeX source, 7 pages, no figure

    Remarks on the multi-species exclusion process with reflective boundaries

    Full text link
    We investigate one of the simplest multi-species generalizations of the one dimensional exclusion process with reflective boundaries. The Markov matrix governing the dynamics of the system splits into blocks (sectors) specified by the number of particles of each kind. We find matrices connecting the blocks in a matrix product form. The procedure (generalized matrix ansatz) to verify that a matrix intertwines blocks of the Markov matrix was introduced in the periodic boundary condition, which starts with a local relation [Arita et al, J. Phys. A 44, 335004 (2011)]. The solution to this relation for the reflective boundary condition is much simpler than that for the periodic boundary condition

    Matrix Product Eigenstates for One-Dimensional Stochastic Models and Quantum Spin Chains

    Full text link
    We show that all zero energy eigenstates of an arbitrary mm--state quantum spin chain Hamiltonian with nearest neighbor interaction in the bulk and single site boundary terms, which can also describe the dynamics of stochastic models, can be written as matrix product states. This means that the weights in these states can be expressed as expectation values in a Fock representation of an algebra generated by 2m2m operators fulfilling m2m^2 quadratic relations which are defined by the Hamiltonian.Comment: 11 pages, Late

    1981 Plant viruses

    Get PDF
    1, Clover viruses - 81HA6, 81MA9, 81BR14, 81BY12, 81BH5, 81AL38, 81ES39 OBJECTIVES: To determine the extent of the \u27Dinninup virus\u27 problem (sub. clover mottle). To further assess the incidence of red leaf virus to determine the incidence of bean yellow mosaic virus. To note the incidence of sub. clover stunt virus. A. BYDV: Survey of incidence - 81BU1, 81BU2, 81BR11, 81BR12, 81MA6, 81MA7, 81AL31, 81AL32, 81JE14, 81JE15, 81KA21, 81KA22, 81NA28, 81N031, 81ES38, 81E26. 2. Barley yellow dwarf virus. BYDV: Genotype x insecticide studies - 81MN14, 81MT29, 81E28, 81MN14. BYDV: differences amongst barley genotypes - 81C19, 81WH31, 81BA30. BYDV: Resistance and yield in CV.Shannon and CV. Proctor - 871BR13, 81MA8, 81AL36, 81JE17 Yield per plot and 100 seed weight - Albany 81AL36 Infection of BYDV in cereal genotypes at Manjimup ( 81MN13)

    Phase diagram of a generalized ABC model on the interval

    Full text link
    We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,...,Ni=1,...,N is occupied by a particle of type \a=A,B,C, with the average density of each particle species N_\a/N=r_\a fixed. These particles interact via a mean field non-reflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N\rw\infty, i/N\rw x\in[0,1] has a unique density profile \p_\a(x) except for some special values of the r_\a for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature Tc=3rArBrC/2πT_c=3\sqrt{r_A r_B r_C}/2\pi.Comment: 25 pages, 6 figure
    corecore